Read More at Fight Aging! The stem cell therapy industry is evolving. There are a few reasons for this. Firstly, cells remain hard to work with as a basis for therapy, and the level of standardization expected by regulators is very challenging to achieve, even for companies with very deep pockets. In the wilder world of stem cell therapies obtained via medical tourism, outcomes vary broadly from clinic to clinic and patient to patient for reasons that remain unclear. Secondly, stem cell transplantation produces benefits to aged patients primarily via the signaling produced by transplanted cells in a short time prior their destruction, rather than through any other activity of those cells. Given these points, there is a slow shift away from using cells and towards the use of cell products such as harvested extracellular vesicles or, as in today’s…
To What Degree Can Cell Therapies Rebuild the Aging Brain?
Read More at Fight Aging! Repair of the aging brain is perhaps the most important of goals in regenerative medicine. We are the data that is stored in some way within the small-scale structures of our brain tissue, and so the options for outright replacement of brain cells and tissues are somewhat constrained. As a thought experiment, it is in principle possible, given significant progress in biotechnology, to manufacture a cloned body to receive a transplanted brain. All of the steps needed either already happen in nature, such as the growth of bodies without brains, and would need control and direction, or have been crudely demonstrated in animal studies, such as brain transplants, albeit with major limitations and risk of failure. There may well be little gain in transplanting an aged brain if it cannot be repaired, however. In any…
Cell Membrane Changes in Brain Aging
Read More at Fight Aging! Researchers here discuss what is know of changes that take place with age in cell membranes in the brain, and how they might negatively affect cell function. Like many aspects of aging, connecting these changes to the set of underlying mechanisms that cause aging is a challenging prospect, yet to be accomplished. Everything changes with age, and drawing connections between any two of those changes in order to demonstrate causation is a hard task. Aging affects the plasma membrane of all the cells of the body, not only its composition and structure but also the function of its different components. Any change in the lipid composition of the cell membranes will impact the function of membrane receptors and the way the cells sense the environment. Numerous studies have shown the existence of significant differences in…
Cell Stiffness and Migration in Aging
Read More at Fight Aging! Looking at T cells, researchers here note correlated age-related alterations in cell stiffness and reduced capability for cell migration, which maybe involved in the declining capabilities of the immune system, the onset of immunosenescence. Many aspects of cell behavior change with age, as epigenetic changes characteristic of aging reshape gene expression. At this point in the development of aging research as a field, cataloging all of these changes should be a lower priority than working on ways to address causes of aging. Nonetheless, a great deal of aging research remains devoted to observing aging, in increasingly fine detail, rather than doing something about it. Age-associated changes in T-cell function play a central role in immunosenescence. The role of aging in the decreased T-cell repertoire, primarily because of thymic involution, has been extensively studied. However, increasing…
Transplanting B Cells from Old Mice to Young Mice to Investigate Details of B Cell Aging
Read More at Fight Aging! The varieties of B cell in the immune system participate in the immune response to pathogens by creating antibodies to match specific antigens, and spreading the information represented by that antibody to portions of the adaptive immune system capable of attacking threats. This is a very crude, high level summary of an enormously complex system. The fine details of how subsets of the B cell population generate suitable antibodies, and then communicate with one another and the rest of the immune system, are complicated indeed, involving many different subsets of cell, different paths of activation, and different mechanisms. Aspects of B cell function are known to decline with age, contributing to the broader loss of efficacy in the immune response, the onset of immunosenescence. Is this a problem with the B cells themselves becoming changed…
Chromatin Structure in Cell Aging and Senescence
Read More at Fight Aging! The constantly changing structure of nuclear DNA, packaged into chromatin, determines which genes are accessible to the machinery of gene expression, which determines protein production, which determines cell behavior and state. Chromatin structure and all of the determinants of that structure, including epigenetic marks such as DNA methylation, change as a cell ages towards the Hayflick limit and cellular senescence, and change in aged tissues versus young tissues. Given the advent of epigenetic reprogramming as a potential strategy for rejuvenation, questions regarding the ways in which epigenetics determines cell function in cellular senescence and aging become more pressing. Comprehending the role of molecular processes such as DNA damage repair, telomere shortening, nuclear and chromatin changes along with epigenetic alterations which drive aging as well as aging related diseases may hold a key to the “elixir…